Taxonomies with Lattice Algebras
نویسنده
چکیده
In this paper taxonomies are considered to be mathematical lattices. This gives us a \two-edged sword" for describing taxonomies. On the one-hand, we have a concise algebra suitable for speciication of taxonomies, and on the other an order theoretic representation suitable for visual presentation of ontologies. A language based on algebraic lattices is described and given a model-theoretic semantics. It is shown how we can infer conceptual knowledge, i.e. automatically generate new concepts and place them in a taxonomy. By adding attributes to this language we can describe ontologies, giving us a powerful language for conceptual representation and reasoning. As an example is shown how this language facilitates disambiguation by means of an ontology.
منابع مشابه
Lattice of full soft Lie algebra
In this paper, we study the relation between the soft sets and soft Lie algebras with the lattice theory. We introduce the concepts of the lattice of soft sets, full soft sets and soft Lie algebras and next, we verify some properties of them. We prove that the lattice of the soft sets on a fixed parameter set is isomorphic to the power set of a ...
متن کاملOn residuated lattices with universal quantifiers
We consider properties of residuated lattices with universal quantifier and show that, for a residuated lattice $X$, $(X, forall)$ is a residuated lattice with a quantifier if and only if there is an $m$-relatively complete substructure of $X$. We also show that, for a strong residuated lattice $X$, $bigcap {P_{lambda} ,|,P_{lambda} {rm is an} m{rm -filter} } = {1}$ and hence that any strong re...
متن کاملA new approach to characterization of MV-algebras
By considering the notion of MV-algebras, we recall some results on enumeration of MV-algebras and wecarry out a study on characterization of MV-algebras of orders $2$, $3$, $4$, $5$, $6$ and $7$. We obtain that there is one non-isomorphic MV-algebra of orders $2$, $3$, $5$ and $7$ and two non-isomorphic MV-algebras of orders $4$ and $6$.
متن کاملOn nuclei of sup-$Sigma$-algebras
In this paper, algebraic investigations on sup-$Sigma$-algebras are presented. A representation theorem for sup-$Sigma$-algebras in terms of nuclei and quotients is obtained. Consequently, the relationship between the congruence lattice of a sup-$Sigma$-algebra and the lattice of its nuclei is fully developed.
متن کاملOn Heyting algebras and dual BCK-algebras
A Heyting algebra is a distributive lattice with implication and a dual $BCK$-algebra is an algebraic system having as models logical systems equipped with implication. The aim of this paper is to investigate the relation of Heyting algebras between dual $BCK$-algebras. We define notions of $i$-invariant and $m$-invariant on dual $BCK$-semilattices and prove that a Heyting semilattice is equiva...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000